97 research outputs found

    Rac1 accumulates in the nucleus during the G2 phase of the cell cycle and promotes cell division

    Get PDF
    Rac1 regulates a wide variety of cellular processes. The polybasic region of the Rac1 C terminus functions both as a plasma membrane–targeting motif and a nuclear localization sequence (NLS). We show that a triproline N-terminal to the polybasic region contributes to the NLS, which is cryptic in the sense that it is strongly inhibited by geranylgeranylation of the adjacent cysteine. Subcellular fractionation demonstrated endogenous Rac1 in the nucleus and Triton X-114 partition revealed that this pool is prenylated. Cell cycle–blocking agents, synchronization of cells stably expressing low levels of GFP-Rac1, and time-lapse microscopy of asynchronous cells revealed Rac1 accumulation in the nucleus in late G2 and exclusion in early G1. Although constitutively active Rac1 restricted to the cytoplasm inhibited cell division, activated Rac1 expressed constitutively in the nucleus increased the mitotic rate. These results show that Rac1 cycles in and out of the nucleus during the cell cycle and thereby plays a role in promoting cell division

    Rap1 up-regulation and activation on plasma membrane regulates T cell adhesion

    Get PDF
    Rap1 and Ras are closely related GTPases that share some effectors but have distinct functions. We studied the subcellular localization of Rap1 and its sites of activation in living cells. Both GFP-tagged Rap1 and endogenous Rap1 were localized to the plasma membrane (PM) and endosomes. The PM association of GFP-Rap1 was dependent on GTP binding, and GFP-Rap1 was rapidly up-regulated on this compartment in response to mitogens, a process blocked by inhibitors of endosome recycling. A novel fluorescent probe for GTP-bound Rap1 revealed that this GTPase was transiently activated only on the PM of both fibroblasts and T cells. Activation on the PM was blocked by inhibitors of endosome recycling. Moreover, inhibition of endosome recycling blocked the ability of Rap1 to promote integrin-mediated adhesion of T cells. Thus, unlike Ras, the membrane localizations of Rap1 are dynamically regulated, and the PM is the principle platform from which Rap1 signaling emanates. These observations may explain some of the biological differences between these GTPases

    NRAS is unique among RAS proteins in requiring ICMT for trafficking to the plasma membrane

    Get PDF
    Isoprenylcysteine carboxyl methyltransferase (ICMT) is the third of three enzymes that sequentially modify the C-terminus of CaaX proteins, including RAS. Although all four RAS proteins are substrates for ICMT, each traffics to membranes differently by virtue of their hypervariable regions that are differentially palmitoylated. We found that among RAS proteins, NRAS was unique in requiring ICMT for delivery to the PM, a consequence of having only a single palmitoylation site as its secondary affinity module. Although not absolutely required for palmitoylation, acylation was diminished in the absence of ICMT. Photoactivation and FRAP of GFP-NRAS revealed increase flux at the Golgi, independent of palmitoylation, in the absence of ICMT. Association of NRAS with the prenyl-protein chaperone PDE6δ also required ICMT and promoted anterograde trafficking from the Golgi. We conclude that carboxyl methylation of NRAS is required for efficient palmitoylation, PDE6δ binding, and homeostatic flux through the Golgi, processes that direct delivery to the plasma membrane.</p

    PKC Regulates a Farnesyl-Electrostatic Switch on K-Ras that Promotes its Association with Bcl-Xl on Mitochondria and Induces Apoptosis

    Get PDF
    K-Ras associates with the plasma membrane (PM) through farnesylation that functions in conjunction with an adjacent polybasic sequence. We show that phosphorylation by protein kinase C (PKC) of S181 within the polybasic region promotes rapid dissociation of K-Ras from the PM and association with intracellular membranes, including the outer membrane of mitochondria where phospho-K-Ras interacts with Bcl-Xl. PKC agonists promote apoptosis of cells transformed with oncogenic K-Ras in a S181-dependent manner. K-Ras with a phosphomimetic residue at position 181 induces apoptosis via a pathway that requires Bcl-Xl. The PKC agonist bryostatin-1 inhibited the growth in vitro and in vivo of cells transformed with oncogenic K-Ras in a S181-dependent fashion. These data demonstrate that the location and function of K-Ras are regulated directly by PKC and suggest an approach to therapy of K-Ras-dependent tumors with agents that stimulate phosphorylation of S18

    The potential of photo-deposited silver coatings on Foley catheters to prevent urinary tract infections

    Get PDF
    Catheter-associated urinary tract infection (CAUTI) represents one of the most common causes of morbidity and mortality. The resistance demonstrated by many microorganisms to conventional antibiotic therapies and the increasing health-care costs have recently encouraged the definition of alternative preventive strategies,which can have a positive effect in the management of infections. Antimicrobial urinary catheters have been developed through the photo-chemical deposition of silver coatings on the external and luminal surfaces. The substrates are exposed to ultraviolet radiation after impregnation into a silver-based solution, thus inducing the in situ synthesis of silver particles. The effect of the surface treatment on the material was investigated through scanning electron microscopy (SEM) and silver ion release measurements. The ability of microorganisms commonly associated with urinary tract infections was investigated in terms of bacterial viability, proliferation and biofilm development, using Escherichia coli, Klebsiella pneumoniae and Proteus mirabilis as target organisms. The silver coatings demonstrated good distribution of silver particles to the substrate, and proved an effective antibacterial capability in simulated biological conditions. The low values of silver ion release demonstrated the optimum adhesion of the coating. The results indicated a good potential of silver-based antimicrobialmaterials for prevention of catheter-associated urinary tract infection

    Milk and dairy products: good or bad for human health? An assessment of the totality of scientific evidence

    Get PDF
    Background: There is scepticism about health effects of dairy products in the public, which is reflected in an increasing intake of plant-based drinks, for example, from soy, rice, almond, or oat. Objective: This review aimed to assess the scientific evidence mainly from meta-analyses of observational studies and randomised controlled trials, on dairy intake and risk of obesity, type 2 diabetes, cardiovascular disease, osteoporosis, cancer, and all-cause mortality. Results: The most recent evidence suggested that intake of milk and dairy products was associated with reduced risk of childhood obesity. In adults, intake of dairy products was shown to improve body composition and facilitate weight loss during energy restriction. In addition, intake of milk and dairy products was associated with a neutral or reduced risk of type 2 diabetes and a reduced risk of cardiovascular disease, particularly stroke. Furthermore, the evidence suggested a beneficial effect of milk and dairy intake on bone mineral density but no association with risk of bone fracture. Among cancers, milk and dairy intake was inversely associated with colorectal cancer, bladder cancer, gastric cancer, and breast cancer, and not associated with risk of pancreatic cancer, ovarian cancer, or lung cancer,while the evidence for prostate cancer risk was inconsistent.Finally,consumption of milk and dairy products was not associated with all-cause mortality. Calcium-fortified plant-based drinks have been included as an alternative to dairy products in the nutrition recommendations in several countries. However, nutritionally, cow’s milk and plant-based drinks are completely different foods,and an evidence-based conclusion on the health value of the plant-based drinks requires more studies in humans. Conclusion: The totality of available scientific evidence supports that intake of milk and dairy products contribute to meet nutrient recommendations, and may protect against the most prevalent chronic diseases, whereas very few adverse effects have been reported

    Spectrum and Frequency of Germline FANCM Protein-Truncating Variants in 44,803 European Female Breast Cancer Cases

    Get PDF
    corecore